If it's not what You are looking for type in the equation solver your own equation and let us solve it.
61x^2-20x-32=0
a = 61; b = -20; c = -32;
Δ = b2-4ac
Δ = -202-4·61·(-32)
Δ = 8208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8208}=\sqrt{144*57}=\sqrt{144}*\sqrt{57}=12\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-12\sqrt{57}}{2*61}=\frac{20-12\sqrt{57}}{122} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+12\sqrt{57}}{2*61}=\frac{20+12\sqrt{57}}{122} $
| -28=6(u-2)-8u | | x2+6x=29x | | 331-2=-6-5(-9r-4) | | v+30=7v | | -7(x+3)=8x+39 | | 331-2=-6-5(-9r-4 | | 125x−34=25x−74 | | -7x+4(x+7)=34 | | 6(12-3x)=-144 | | -16x+12x=2(-9-3x) | | 3p-40=p | | 6x=x+2-7- | | 5/6x+3=4/5x-8+1 | | 12+4x=27+9x | | 9n^2-8n-10=0 | | 2w=2-10 | | 5(x−1)+8x=13x−5 | | 10x=36+6x | | -2x=1=9 | | 9x+2=11x-9 | | -9x=3x-7 | | 2(4-3x)=5(2x-3)=20-5x | | -7a^2-47a-30=0 | | -48=-6(x+9) | | -3000/x^2+8x=0 | | 8x=-7x-9 | | 5x15+2x=24+14x | | 54-4b=34 | | 4x+2(73-x)=182 | | -5x+8+7=-6 | | 6(x-7)+6=6x-32 | | 5(5x-8)=(6x+3)+1 |